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ABSTRACT: The paper presents application of Taylor series to solve states of the control system. The systems are
analyzed  by first order Taylor series and as well as second order Taylor series. A new recursive method for the solution
is discussed here. The state equation of a linear time invariant and differential equation of a nonlinear time invariant
system  are considered as example to clarify the method. The states of two systems are then solved by first order and
second order Taylor series both and also compared with the exact solution which are reasonably close to each other. This
comparison is shown  in tables and graphs both to validate the new approach.

Index Terms—Linear time invariant, nonlinear time invariant, states, Taylor series.

I. INTRODUCTION

The concept of Taylor series expansion was formally
introduced by the English mathematician Brook Taylor in
1715.  The concept, though quite old, has not lost its
importance and is used in many areas of mathematical
analysis.

Taylor’s series is an expansion of a function into an infinite
series of a variable t, or into a finite series plus a remainder
term. The coefficients of the expansion or of the subsequent
terms of the series involve the successive derivatives of the
function.

In this paper Taylor series is utilized to solve dynamic
differential equations [1] of  a control system, e. g., state
equations, to determine the states of the system. Several works
have been done to form orthogonal operational matrix using
Taylor series [3].  Time delay system has also been analyzed
along with identification of parameters [4]. The presented
method herein uses Taylor approximation to solve state as well
as  differential equations in a recursive manner.

Haar function [6], Walsh function [7], Block pulse function
[8] are the mathematical tools used for state space problem
solution. Later, hybrid functions [9, 10], triangular function
[11] have been used extensively. But the Taylor series
technique is much simpler and a powerful tool as well.

II. TAYLOR APPROXIMATION

A. First order Taylor approximation [2]

Consider a time function f(t) in an interval of width h, t∈(ih,

(i+1)h). A first order Taylor approximation f1(t) of the

function f(t) around a point iμ is represented as

f1(t) f(μ ) f(μ )(t - μ )i i i+  …(1)

where ( )iμ ih, (i 1)h∈ +

If the point iμ coincides with the leading terminal point ih,

then iμ =ih and equation (1)  becomes

f1(t) = f(ih) f(ih)(t - ih)+  …(2)
If  t=(i+1)h in (2), then

f1{(i + 1)h} = f(ih) hf(ih)+  …(3)
…

f1{(i + 1)h} in equation (3) is the initial value of f(t)

for the next interval ( )t (i +1)h, (i + 2)h .∈
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B. Second order Taylor approximation

A second order Taylor approximation f2(t) of the function

f(t) around the same point iμ is represented as

21
f2(t) f(μ ) f(μ )(t - μ ) f(μ )(t - μ )i i i i i2!

+ +  …(4)

With the assumption iμ = ih, (4)  reduces to

21
f2(t) = f(ih) f(ih)(t - ih) f(ih)(t - ih)

2!
+ +  …(5)

In (5), as before, we set  t=(i+1)h   then
2h

f2{(i + 1)h} = f(ih) h f(ih) f(ih)
2!

+ +  …(6)

f2{(i + 1)h} is the initial value of f(t) for the next interval

( )t (i +1)h, (i + 2)h .∈

III. SOLUTION OF STATE EQUATION VIA TAYLOR
APPROXIMATION

A. Linear time invariant (LTI) system

Consider the state equation of a linear time invariant (LTI)

system as

•

= + Ux(t) Ax(t) B (t) … (7)

and = 0x(0) x
Differentiating  (7),   we have

••• •

= + Ux(t) A x(t) B (t) … (8)

For t=ih,  equations (7) and (8) can be rewritten as

•

= + Ux(ih) Ax(ih) B (ih) … (9a)
••• •

= + Ux(ih) A x(ih) B (ih) … (9b)

Using  (3) in equation  (9), we can write following recursive
equations

= h
•

x1(h) x(0) (0)x

= h


x1{(i + 1)h} x1(ih) 1(ih)x … (10)

where, i=1, 2, 3, …, N, N being a large number.
Thus, from (10), using (9a) and knowing U(t), we can solve
for the state vector x(t) recursively via first order Taylor
approximation. Similarly, to obtain a more accurate recursive

solution, we use second order Taylor approximation as given
in (6) to get

2h
= h

2!

••

+


x2(h)} x(0) (0) (0)x x

2h
h

2!
x2{(i + 1)h} = x2(ih) 2(ih) + 2(ih)x x

 


… (11)
where, i=1, 2, 3, …, N, N being a large number.
Thus, from (11), using both (9a) and (9b), we can solve for the
state vector x(t) recursively via second order Taylor
approximation.
Equations (10) and (11) may be solved with a fixed step size h
or any dynamic step size, which means h can be changed
during recursion.

B. Example

Consider the linear time invariant system

1 1.8 1.8

5 1 0

• − −   = +   −   
Ux(t) x(t) (t) … (12)

and 0

0

 = =  
 

0x(0) x with unit step input.

The exact solution is

x1(t) = 0.18 - 0.18exp(-t) cos 3t + 0.54exp(-t) sin 3t
… (13a)

and x2(t) = 0.9 - 0.9exp(-t) cos 3t - 0.3exp(-t) sin 3t
… (13b)

Using equations (9a) and (10) we can solve for the states via
first order Taylor approximation, and using equations (9a),
(9b) and (11), we can solve the states with second order Taylor
approximation. The results are given in Table 1 and Table 2.
For computation, we have considered a time interval T = 2 s
and the number of steps m = 20, so that h = 0.1 s.

Figure 1 shows the recursive solutions obtained via first
order Taylor approximation while figure 2 shows the recursive
solutions obtained using second order approximation.
Solution by 1st order Taylor series is represented by Taylor1
and 2nd order Taylor series by Taylor2 in graph.

To compare the credibility of the results, both the figures
show the exact solution of the states x1 and x2. As expected,
the second order approximation is way better than the first
order approximation. In figure 3, all the results, i. e., recursive
solution using first order Taylor approximation as well as
second order Taylor approximation, and the exact solution, are
shown together for better clarity.

If we gradually increase m, keeping the time interval T
fixed (i. e., h is decreased), the first order Taylor
approximation improves gradually. It is observed that for m =
160 the recursive solution almost overlaps the exact solution.
This is shown in figure 4.
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Fig. 1. Solution of the states  x1 and x2 via first order Taylor
approximation  compared with the exact solution  for  m=20.

Table 1: Recursive solution of the state (x1) obtained via
first order and second order Taylor approximation
compared with the exact solution (for T=2 s, m=20 and
h=0.1 s).

Time
(Sec.)

X1
Exact
solution
x1(t)

Pointwise
recursive
solution of
x1(t) with 1st
order
approximation

Pointwise
recursive
solution of
x1(t) with 2nd
order
approximation

0 0 0 0

0.1000 0.1688 0.1800 0.1710

0.2000 0.3080 0.3420 0.3108

0.3000 0.4105 0.4716 0.4122

0.4000 0.4737 0.5591 0.4732

0.5000 0.4990 0.5999 0.4956

0.6000 0.4911 0.5947 0.4846

0.7000 0.4566 0.5485 0.4475

0.8000 0.4035 0.4700 0.3926

0.9000 0.3400 0.3705 0.3284

1.0000 0.2736 0.2618 0.2624

1.1000 0.2108 0.1558 0.2012

1.2000 0.1566 0.0629 0.1495

1.3000 0.1144 -0.0091 0.1104

1.4000 0.0857 -0.0550 0.0850

1.5000 0.0707 -0.0727 0.0731

1.6000 0.0682 -0.0634 0.0734

1.7000 0.0762 -0.0307 0.0835

1.8000 0.0921 0.0198 0.1006

1.9000
2.0000

0.1131
0.1362

0.0812
0.1464

0.1218
0.1445

Fig. 2. Solution of the states  x1 and x2 via second order
Taylor approximation  compared with the exact solution for
m=20.
Table 2: Recursive solution of the state (x2) obtained via
first order and second order Taylor approximation
compared with the exact solution (for T=2 s, m=20 and
h=0.1 s).

X2

Time
(Sec.)

Exact
solution
x2(t)

Pointwise
recursive
solution of
x2(t) with 1st
order
approximation

Pointwise
recursive
solution of
x2(t) with 2nd
order
approximation

0

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0 0 0

0.0418 0 0.0450

0.1532 0.0900 0.1607

0.3115 0.2520 0.3230

0.4940 0.4626 0.5083

0.6799 0.6959 0.6951

0.8519 0.9262 0.8658

0.9970 1.1309 1.0077

0.8000

0.9000

1.0000

1.1000

1.2000

1.3000

1.4000

1.5000

1.6000

1.7000

1.8000

1.9000

1.1071 1.2921 1.1130

1.1787 1.3979 1.1788

1.2122 1.4433 1.2066

1.2116 1.4299 1.2007

1.1831 1.3648 1.1682

1.1343 1.2598 1.1169

1.0733 1.1292 1.0552

1.0078 0.9888 0.9907

0.9444 0.8536 0.9299

0.8886 0.7365 0.8778

0.8439 0.6475 0.8374

0.8123

0.7944

0.5926

0.5740

0.8105

0.7968
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Fig. 3. Comparison between first order approximation and
second order approximation for m = 20.

Fig. 4. Taylor approximation upto first order approximation
and for m = 160.

A. Non-linear time invariant (NLTI) system

Consider the following nonlinear differential equation

3f x kx k x 0
•

′+ + = … (14)
where, f , k and k′ are constants.

Let the initial state be x(0) x= 0

Differentiating  (14),   we have

2f x k x 3k x x
•• • •

′= − − … (15)

For t=ih,  equations (14) and (15) can be rewritten as

3k k
x(ih) x(ih) x (ih)

f f

• ′
= − − …(16a)

2k 3k
x(ih) x(ih) x (ih) x(ih)

f f

•• • •′
= − − … (16b)

So, knowing x(0), using (16a) and (16b), x(0)
•

and x(0)
••

can

be obtained.

Using  (3), for the unknown function x(t),  we can write the
following equations as

x1(1) = x(0) h x(0)
•

+

x1{(i + 1)h} = x1(ih) h x1(ih)
•

+ … (17)

Thus, from (17), using (16a), we can solve for x(t)  recursively
using first order Taylor approximation.

Similarly, to obtain a more accurate solution, we use
second order Taylor approximation as in (6) to get

h
x2(h) = x(0) h x(0) x(0)

2

• ••

+ +
2

2h
x2{(i + 1)h} = x(ih) h (ih) (ih)x x

2!

••

+ +


… (18)

Thus, from (18), using both (16a) and (16b), we can solve
for x(t) recursively using second order approximation. Also,
equations (17) and (18) may be solved with a fixed value of
the step h or a dynamic value. That is, h can be changed during
recursion.

B. Example [5]

Consider nonlinear time invariant system

2 0.2 where, x(0) 0= xx x
•

=− − + … (19)

From above equation we find,

= 2xx x x
•• • •

− − … (20)
Then using (19) and (20), we find solution at any point of time
in any interval by using the following recursion

2h
x{(i + 1)h} = x(ih) h (ih) (ih)x x

2!

• ••

+ +

2h
= x(ih) h (ih) x(ih) 2x(ih) x(ih)x

2!
 

•

+ +
 

− −   

 
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The exact solution is obtained using Volterra integral equation
as

{ }-1
x(t) = 5.1095exp(1.3416t) 0.7453 + 0.1708− −

For m=20, T=4, the discrete solution points are presented in
Table 3.
Solution by 1st order Taylor series is represented by Taylor1
and 2nd order Taylor series by Taylor2 in graph.

Figure 5 shows the recursive solutions obtained via first order
Taylor approximation while figure 6 shows the solutions
obtained using second order approximation, with m=20 in
each case.

Table 3: Recursive solution of the state obtained via first
order and second order Taylor approximation compared
with the exact solution (for T=4 s, m=20 and h=0.2 s).

Time
(Sec.)

Exact
solution
x(t)

Pointwise
recursive
solution of x(t)
with 1st order
approximation

Pointwise
recursive
solution of x(t)
with 2nd order
approximation

0 0 0 0

0.2000 0.0362 0.0400 0.0360

0.4000 0.0654 0.0717 0.0651

0.6000 0.0887 0.0963 0.0882

0.8000 0.1071 0.1152 0.1066

1.0000 0.1215 0.1295 0.1210

1.2000 0.1328 0.1402 0.1323

1.4000 0.1416 0.1483 0.1411

1.6000 0.1483 0.1542 0.1479

1.8000 0.1536 0.1586 0.1531

2.0000 0.1576 0.1619 0.1572

2.2000 0.1607 0.1642 0.1603

2.4000 0.1630 0.1660 0.1628

2.6000 0.1649 0.1673 0.1646

2.8000 0.1663 0.1682 0.1661

3.0000 0.1673 0.1689 0.1672

3.2000 0.1682 0.1694 0.1680

3.4000 0.1688 0.1698 0.1687

3.6000

3.8000

4.0000

0.1693

0.1696

0.1699

0.1701

0.1703

0.1704

0.1692

0.1695

0.1698
To compare the validity of these results, both the figures show
the exact solution. As expected, the second order
approximation is much better than the first order
approximation. In figure 7, all the results, i. e., recursive

solution using first order as well as second order Taylor
approximation, and the exact solution, are shown together for
better clarity.

Fig. 5. First order Taylor approximation for m=20.

Fig. 6. Second order Taylor approximation for m=20.

Fig. 7. Comparison between first order approximation and
second order approximation for m = 20.



Ghosh, Deb and Sarkar 27

Fig. 8. First order Taylor approximation  for m = 110.

In Figure 3 and 6, 1st order solution and 2nd order solution are
solved with the same sub- interval h, but for the sake of clarity,
the graph for Taylor 2 solution is plotted with an initial
sampling period of  h/2, and after that the plot is continued
with the same sampling period h, so that the sample points do
not mingle.
In Figure 8, no of intervals taken is 110. But for the sake of
clarity, all of 110 points are not plotted. Instead, only a few
points are indicated in the graph.

IV. CONCLUSION

We have presented recursive method for solving linear as well
as nonlinear state equations of a control system based upon
Taylor series expansion. We have used both first order and
second order expansion using different step sizes. It is
observed that the results obtained in this manner are
reasonably reliable. For first order approximation, using 20
steps (m=20), the deviation of the solution from the exact
results are quite noticeable. But for second order Taylor
approximation the presented recursive method offers highly
dependable solutions and almost overlaps with the exact
solution. Three tables (tables 1, 2 and 3) and eight figures (fig.
1 to fig. 8) are presented to compare the results in both
quantitative and  qualitative manner.

It is clear from the plots of different figures, how close the
Taylor series based solutions are. In fact, solutions obtained
via Taylor 2 and also, with Taylor 1 (with smaller subinterval
h of course), are very close to the exact solutions. Three tables
(Tables 1, 2 and 3) also reflect this fact.

Solution of differential equation using Taylor series is not new.
But the innovative idea in this work is to analyze a dynamic
system by solving state equations using Taylor series,
especially in a recursive manner.  A recursive method is
considered to be faster than methods involving Kronecker
products and inversion of large matrices.

And also, the recursive method requires much less memory.
The simplicity of solution using Taylor series via recursion
makes it powerful tool over other methods.

Also, solving nonlinear system is a more difficult task
compared to solving linear systems.  And it always calls for
special techniques involving much more mathematical
complexity.  In this paper we have used the same tool to solve
linear as well as nonlinear systems.  We think this is really a
specialty of this work.
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